More AC Analysis

Michel M. Maharbiz
Vivek Subramanian

Impedance and Admittance

Impedance is
voltage/current

$$
\begin{gathered}
\mathbf{Z}=R+j X \\
R=\text { resistance }=\operatorname{Re}(Z) \\
X=\text { reactance }=\operatorname{Im}(Z)
\end{gathered}
$$

Admittance is current/voltage

$$
\mathbf{Y}=\frac{1}{\mathbf{Z}}=G+j B
$$

$G=$ conductance $=\operatorname{Re}(Y)$
$B=$ susceptance $=\operatorname{Im}(Y)$

Resistor	$\mathbf{Z}=R$	$\mathbf{Y}=1 / R$
Inductor	$\mathbf{Z}=j \omega L$	$\mathbf{Y}=1 / j \omega L$
Capacitor	$\mathbf{Z}=1 / j \omega C$	$\mathbf{Y}=j \omega C$

Impedance Transformation

(a) RL

Voltage \& Current Division

$$
\mathbf{I}_{1}=\left(\frac{\mathbf{Y}_{1}}{\mathbf{Y}_{1}+\mathbf{Y}_{2}}\right) \mathbf{I}_{\mathrm{s}} \quad \mathbf{I}_{2}=\left(\frac{\mathbf{Y}_{2}}{\mathbf{Y}_{1}+\mathbf{Y}_{2}}\right) \mathbf{I}_{\mathrm{s}}
$$

Linear circuit techniques

- We can now apply all the techniques we learned before (for dc circuits in the time domain) to ac circuits in the phase domain:
- Superposition
- Thevenin / Norton Equivalents

Example: Thévenin Circuit

(a) $v_{\mathrm{s}}(t)=10 \cos 10^{5} t(\mathrm{~V})$

Example: Thévenin Circuit

Example: Thévenin Circuit

Example: Thévenin Circuit

Example: Thévenin Circuit

$$
R_{\mathrm{Th}}=8.42 \Omega
$$

$$
C_{\mathrm{Th}}=\frac{1}{1.59 \omega}=6.29 \mu \mathrm{~F}
$$

Solving using Phasor Diagrams

- The relationships between current and voltage for L and C are:

Capacitor

- The relationship between current and voltage for R is trivial, obviously

Solving using Phasor Diagrams

- Consider the following circuit, with $\mathrm{Vs}=20 \mathrm{e}^{\mathrm{j} 30}$

$$
\mathbf{I}=\frac{\mathbf{V}_{\mathrm{s}}}{R+j \omega L-\frac{j}{\omega C}}
$$

Solving using Phasor Diagrams

- We can the find the individual voltages graphically: $I=2 \mathrm{e}^{\mathrm{j} 66.87^{\circ}} \mathrm{A}$

(c) Relative phasor diagrarr to that of \mathbf{I}.

