#### More AC Analysis

Michel M. Maharbiz Vivek Subramanian

# Impedance is voltage/current

$$\mathbf{Z} = R + jX$$

$$R$$
 = resistance = Re( $Z$ )  
 $X$  = reactance = Im( $Z$ )

Admittance is current/voltage  $\mathbf{Y} = \frac{1}{\mathbf{Z}} = G + jB$ 

$$G = \text{conductance} = \text{Re}(Y)$$
  
 $B = \text{susceptance} = \text{Im}(Y)$ 

| Resistor  | $\mathbf{Z} = R$              | $\mathbf{Y} = 1 / R$          |
|-----------|-------------------------------|-------------------------------|
| Inductor  | $\mathbf{Z} = j\omega L$      | $\mathbf{Y} = 1 / j \omega L$ |
| Capacitor | $\mathbf{Z} = 1 / j \omega C$ | $\mathbf{Y} = j\omega C$      |

#### **Impedance Transformation**



#### **Voltage & Current Division**



- We can now apply all the techniques we learned before (for dc circuits in the time domain) to ac circuits in the phase domain:
  - Superposition
  - Thevenin / Norton Equivalents



(a)  $v_{\rm s}(t) = 10 \cos 10^5 t \,({\rm V})$ 









$$R_{\rm Th} = 8.42 \ \Omega,$$
  
 $C_{\rm Th} = \frac{1}{1.59\omega} = 6.29 \ \mu {\rm F}$ 

### **Solving using Phasor Diagrams**

• The relationships between current and voltage for L and C are:



 The relationship between current and voltage for R is trivial, obviously

#### **Solving using Phasor Diagrams**

• Consider the following circuit, with Vs=20e<sup>j30</sup>





### **Solving using Phasor Diagrams**

 We can the find the individual voltages graphically:
I = 2e<sup>j66.87°</sup> A

